The intersection area of two circles


Posted by Diego Assencio on 2017.07.12 under Mathematics (Geometry)

Let $C_1$ and $C_2$ be two circles of radii $r_1$ and $r_2$ respectively whose centers are at a distance $d$ from each other. Assume, without loss of generality, that $r_1 \geq r_2$. What is the intersection area of these two circles?

If $d \geq r_1 + r_2$, the circles intersect at most up to a point (when $d = r_1 + r_2$) and therefore the intersection area is zero. On the other extreme, if $d + r_2 \leq r_1$, circle $C_2$ is entirely contained within $C_1$ and the intersection area is the area of $C_2$ itself: $\pi r_2^2$. The challenging case happens when both $d \lt r_1 + r_2$ and $d + r_2 \gt r_1$ are satisfied, i.e., when the the circles intersect only partially but the intersection area is more than simply a point. Rearranging the second inequality, we obtain $r_1 - r_2 \lt d \lt r_1 + r_2$, so we will assume this to be the case from now on.

To solve this problem, we will make use of a Cartesian coordinate system with origin at the center of circle $C_1$ such that the center of $C_2$ is at $(d,0)$ as shown on figure 1.

Fig. 1: Two intersecting circles $C_1$ (blue) and $C_2$ (red) of radii $r_1$ and $r_2$ respectively. The distance between the centers of the circles is $d = d_1 + d_2$, where $d_1$ is the $x$ coordinate of the intersection points and $d_2 = d - d_1$. Notice that $d_1 \geq 0$ since these points are always located to the right of the center of $C_1$, but $d_2$ may be negative when $r_2 \lt r_1$ since, in this case, the intersection points will eventually fall to the right of the center of $C_2$ as we move $C_2$ to the left, making $d \lt d_1$ and therefore $d_2 \lt 0$.

The circles $C_1$ and $C_2$ are described by the following equations respectively: $$ \begin{eqnarray} x^2 + y^2 &=& r_1^2 \label{post_8d6ca3d82151bad815f78addf9b5c1c6_c1}\\[5pt] (x - d)^2 + y^2 &=& r_2^2 \\[5pt] \end{eqnarray} $$ At the intersection points, we have $x = d_1$. To determine $d_1$, we can replace $x$ with $d_1$ and isolate $y^2$ on both equations above to get: $$ r_1^2 - d_1^2 = r_2^2 - (d_1 - d)^2 $$ Solving for $d_1$ is a simple task: $$ r_1^2 - d_1^2 = r_2^2 - d_1^2 + 2d_1d - d^2 \Longrightarrow d_1 = \displaystyle\frac{r_1^2 - r_2^2 + d^2}{2d} \label{post_8d6ca3d82151bad815f78addf9b5c1c6_eq_d1} $$ From equation \eqref{post_8d6ca3d82151bad815f78addf9b5c1c6_eq_d1}, we can see that $d_1 \geq 0$ since $r_1 \geq r_2$. The intersection area is the sum of the blue and red areas shown on figure 1, which we refer to as $A_1$ and $A_2$ respectively. We then have that: $$ \begin{eqnarray} A_1 &=& 2\int_{d_1}^{r_1} \sqrt{r_1^2 - x^2}dx \label{%INDEX_eq_A1_def} \\[5pt] A_2 &=& 2\int_{d - r_2}^{d_1} \sqrt{r_2^2 - (x - d)^2}dx \end{eqnarray} $$ where the factors of $2$ come from the fact that each integral above accounts for only half of the area of the associated region (only points on and above the $x$ axis are taken into account); the results must then be multiplied by two so that the areas below the $x$ axis are taken into account as well.

The computation of these integrals is straightforward. Before we proceed, notice first that: $$ \begin{eqnarray} A_2 &=& 2\int_{d - r_2}^{d_1} \sqrt{r_2^2 - (x - d)^2}dx \nonumber \\[5pt] &=& 2\int_{- r_2}^{d_1 - d} \sqrt{r_2^2 - x^2}dx \nonumber \\[5pt] &=& 2\int_{d - d_1}^{r_2} \sqrt{r_2^2 - x^2}dx \nonumber \\[5pt] &=& 2\int_{d_2}^{r_2} \sqrt{r_2^2 - x^2}dx \label{%INDEX_eq_A2} \end{eqnarray} $$ where above we used the fact that $d_2 = d - d_1$. This is the same as equation \eqref{%INDEX_eq_A1_def} if we apply the substitutions $d_1 \rightarrow d_2$ and $r_1 \rightarrow r_2$. Therefore, by computing $A_1$, we will immediately obtain $A_2$ as well. Let's then compute $A_1$ first: $$ \begin{eqnarray} A_1 &=& 2\int_{d_1}^{r_1} \sqrt{r_1^2 - x^2}dx \nonumber\\[5pt] &=& 2r_1 \int_{d_1}^{r_1} \sqrt{1 - \left(\frac{x}{r_1}\right)^2}dx \nonumber\\[5pt] &=& 2r_1^2 \int_{d_1/r_1}^{1} \sqrt{1 - x^2}dx \label{%INDEX_eq_A1} \end{eqnarray} $$ All we need to do now is to integrate $\sqrt{1 - x^2}$. The process is straightforward if we use integration by parts: $$ \begin{eqnarray} \int \sqrt{1 - x^2}dx &=& x \sqrt{1 - x^2} - \int x \left(\frac{-x}{\sqrt{1 - x^2}}\right) dx \nonumber\\[5pt] &=& x \sqrt{1 - x^2} + \int \frac{x^2 - 1}{\sqrt{1 - x^2}} dx + \int \frac{1}{\sqrt{1 - x^2}} dx \nonumber\\[5pt] &=& x \sqrt{1 - x^2} - \int \sqrt{1 - x^2} dx + \sin^{-1}(x) \end{eqnarray} $$ Therefore: $$ \int \sqrt{1 - x^2}dx = \frac{1}{2}\left( x \sqrt{1 - x^2} + \sin^{-1}(x) \right) \label{post_8d6ca3d82151bad815f78addf9b5c1c6_int_for_A1_A2} $$ Using equation \eqref{post_8d6ca3d82151bad815f78addf9b5c1c6_int_for_A1_A2} on equation \eqref{%INDEX_eq_A1} yields: $$ \begin{eqnarray} A_1 &=& r_1^2 \left( \frac{\pi}{2} - \frac{d_1}{r_1}\sqrt{1 - \left(\frac{d_1}{r_1}\right)^2} - \sin^{-1}\left(\frac{d_1}{r_1}\right) \right) \nonumber\\[5pt] &=& r_1^2 \left( \cos^{-1}\left(\frac{d_1}{r_1}\right) - \frac{d_1}{r_1}\sqrt{1 - \left(\frac{d_1}{r_1}\right)^2} \right) \nonumber\\[5pt] &=& r_1^2 \cos^{-1}\left(\frac{d_1}{r_1}\right) - d_1 \sqrt{r_1^2 - d_1^2} \label{post_8d6ca3d82151bad815f78addf9b5c1c6_eq_A1_final} \end{eqnarray} $$ where above we used the fact that $\pi/2 - \sin^{-1}(\alpha) = \cos^{-1}(\alpha)$ for any $\alpha$ in $[-1,1]$. This fact is easy to prove: $$ \cos\left(\frac{\pi}{2} - \sin^{-1}(\alpha)\right) = \cos\left(\frac{\pi}{2}\right)\cos(\sin^{-1}(\alpha)) + \sin\left(\frac{\pi}{2}\right)\sin(\sin^{-1}(\alpha)) = \alpha $$ and therefore $\pi/2 - \sin^{-1}(\alpha) = \cos^{-1}(\alpha)$. As discussed above, we can now obtain $A_2$ directly by doing the substitutions $d_1 \rightarrow d_2$ and $r_1 \rightarrow r_2$ on the expression for $A_1$ on equation \eqref{post_8d6ca3d82151bad815f78addf9b5c1c6_eq_A1_final}: $$ A_2 = r_2^2 \cos^{-1}\left(\frac{d_2}{r_2}\right) - d_2 \sqrt{r_2^2 - d_2^2} $$ The sum of $A_1$ and $A_2$ is the intersection area of the circles: $$ \boxed{ \begin{eqnarray} A_{\textrm{intersection}} &=& r_1^2 \cos^{-1}\left(\frac{d_1}{r_1}\right) - d_1\sqrt{r_1^2 - d_1^2} \nonumber \\[5pt] &+& r_2^2\cos^{-1}\left(\frac{d_2}{r_2}\right) - d_2\sqrt{r_2^2 - d_2^2} \nonumber \end{eqnarray} } \label{post_8d6ca3d82151bad815f78addf9b5c1c6_A_intersection} $$ where: $$ \boxed{ d_1 = \displaystyle\frac{r_1^2 - r_2^2 + d^2}{2d} } \quad \textrm{ and } \quad \boxed{ d_2 = d - d_1 = \displaystyle\frac{r_2^2 - r_1^2 + d^2}{2d} } \label{post_8d6ca3d82151bad815f78addf9b5c1c6_eq_d1_final} $$

Summary

Given two circles $C_1$ and $C_2$ of radii $r_1$ and $r_2$ respectively (with $r_1 \geq r_2$) whose center points are at a distance $d$ from each other, the intersection area of the circles is:

1.zero, if $d \geq r_1 + r_2$, since in this case the circles intersect at most up to a point.
2.$\pi r_2^2$, if $d \leq r_1 - r_2$, since in this case $C_2$ is entirely contained within $C_1$.
3.given by equation \eqref{post_8d6ca3d82151bad815f78addf9b5c1c6_A_intersection} in all other cases.

Comments

Livio B on May 15, 2019:
Thank you for the efort. It was really helpful.
Best regards
L.
Jure Skraba on Aug 01, 2019:
How do you calculate intersection area of two circles, when d < min (r1; r2), i.e. when smaller circle lies inside the bigger circle, therefore the intersection area is not sum of two circle segments but their subtract.
Thanks in advance.
Diego Assencio on Aug 01, 2019:
@Jure: The smaller circle lies completely inside the bigger one only when $d \leq r_1 - r_2$, in which case the intersection area is simply the area of the smaller circle itself: $\pi r_2^2$ (see case #2 on the summary at the end of the article).
Jure Skraba on Aug 01, 2019:
To refer to the sketch above I would like to calculate the area, where d < r1 and d > r1 - r2, i.e. when circle C2 lies partly (not completely) inside the circle C1.
Diego Assencio on Aug 01, 2019:
@Jure: In this case, the intersection area can be computed through equations (14) and (15).

If the article is hard to follow, I suggest you read only the summary at the end as it tells you how to compute the intersection area in every possible scenario.
Oisin on Aug 19, 2019:
Hi Diego, I am also confused about the particular case Jure was mentioning. Specifically the case when the centre of the small circle lies within the larger one yet is not fully inside it. d1/r1 can be larger than one here making acos undefined
Diego Assencio on Aug 19, 2019:
@Oisin: $d_1 \gt r_1$ is impossible since $d_1$ is the $x$ coordinate of the points at which $C_1$ and $C_2$ intersect. Setting up the $x$ and $y$ axes as in figure 1, $d_1 \leq r_1$ always holds, even if the center of $C_2$ falls inside $C_1$ in such a way that the intersection between the circles is only partial.

Please notice that the derivation above did not assume that the center of $C_2$ was either inside or outside of $C_1$, so it works in both situations.

Leave a reply

NOTE: A name and a comment (max. 1024 characters) must be provided; all other fields are optional. Equations will be processed if surrounded with dollar signs (as in LaTeX). You can post up to 5 comments per day.

Preview: